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Derivation of the bearing strength perpendicular to the 
grain of locally loaded timber blocks.  
 

 

 

 

 

 

 

Based on the equilibrium method of plasticity, the theoretical explanation of the 

bearing strengths of locally loaded blocks is given in the Appendices.  

The result of the numerical construction of the slip-lines can precisely be represented 

by an analytical function as logarithmic spiral that can be shown to be the exact 

solution. This function can be given in the power law form leading to a theoretical 

and experimental value of the power of 0.5.  

This power representation of the stress spreading model of confined dilatation 

provides a simple design method that precisely matches to the data in all 

circumstances and loading cases and explains the apparent contradictory test results 

of Suenson, the Eurocode, the French rules, Graf, Korin and Augustin et al  
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Bearing strength perpendicular to the grain of locally loaded blocks  

The local compression strength perpendicular to the grain may increase due to 

confined dilatation perpendicular to the loading direction. This is explained in 

Appendix A by the equilibrium method of the theory of plasticity. As derived, the 

increase of strength is proportional with L / s  according to Eq.(1).  

c,s c,90 c,90f c f L/ s 1.08 f L/ s        (1) 

The definition of L and s is given in Fig. 2.  

 
Fig. 1 - Bearing strength c,sf  perpendicular to the grain. Specimen 15x15 cm, lengths:  

            L = 15, 30, 45, 60, 75 cm, of curve a to e, [1] Suenson. s = 15 cm.  

 

The strength values c,sf  are the top-values of the measured curves of Fig. 1. The 

compression strength c,90f , at the top of curve “a” at 15% strain, is here 3.6 MPa.  

 

  Table 1 – Bearing strengths perpendicular to the grain of locally loaded blocks 

Curve L/s L / s  fc,90  

 

MPa 

 Theory 

c,s c,90f 1.1 f L / s    

MPa 

Measurements    

c,sf   

MPa 

ultimate 

strain  

 

a 

b 

c 

d 

e 

 1 

 2 

 3 

 4 

 5 

 1 

√2 

√3 

√4 

√5 

 3.63 

 

 

 

  limit  

         1.1∙fc,90 = 4.0 

 5.6 

 6.9 

 8.0 

≈ as curve “d” 

  

 5.5 

 6.95 

 8.0 

 8.3 

 15% 

  5.5% 

 13% 

 15% 

 10% 

 

The measured maximal strength values, given in Table 1, are precisely according to 

the theory. Fig. 1 shows the strength increase with the increasing possibility of 
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spreading of the load. It further shows that there is a maximal spreading of about 4H 

because the strengths of block “e” and “d” are equal. The strength of specimen “e” 

with L = 5s = 5H, is as strong as specimen “d” with L = 4s = 4H. The definition of L, s 

and H is given in Figure 2. The maximal spreading-length thus is 4H, or better is:  

3H + s. Because s = H, the spreading is 3H, thus 2 times 1.5∙H of both sides. Thus  

L = 2∙1.5∙H + s = 3H + H = 4H. The spreading thus is 1.5:1, as is applied in fig.5.  

When the ultimate state is chosen at a small plastic deformation, as often done, the 

spreading slope is close to 1:1 of the elastic state. This also is to be expected when 

there is no friction at the bearing plates or when not the height H is limiting but the 

spreading length L is limiting being equal then to the length of the block. On this 

determining case the derivation of Eq.(A.17) from Eq.(A.13) is based in Appendix A. 

The same maximal value of the spreading slope of 1.5:1 also follows from other 

investigations as e.g. given in Table 2 of the French design rules where also for 

higher values of “a” above a/H ≥ 1.5 there is no strength increase. 

Eq.(1) provides a simple design rule and is able to explain all mutual strongly 

different empirical results, as will be discussed here.  

The rule of the Eurocode, given in [5], Eq.(4.20), follows from Eq.(1). Because 

c,s c,90f f L / s  and c,s,0 c,90 0f f L / s  , is:  

 
0.5

c,s c,s,0 0 0f / f s / s s / s  .  (2)  

This equation is chosen to apply for s ≤ 0s  = 100 mm and in [5], the exponent 0.5 is 

replaced by 0.4, to better follow the existing safe Code rules of Canada, Denmark, 

Norway Sweden and the UK. This however, only is the case for 100 ≥ s ≥ 50 mm. For 

s ≤ 50 mm, the curve lies increasingly above these Code values. This was corrected 

for small values of s in the CIB – Timber Code by choosing a power of 0.25 while 

wrongly c,s,0f  was taken to be equal to c,90f  for s = 0s  = 150 mm. Because L and thus 

H are eliminated in the derivation of Eq.(2), the equation is not general applicable. 

For very small values of H for instance, there is no spreading at all and the equation 

doesn’t apply. Therefore the right rule, based on the theoretical Eq.(1) was proposed 

for the Timber Code several times in the past as e.g. in [8] and [9].   

 

  Table 2 – Values of c c,s c,90k fc / f  

 
 Fig. 2 – Locally loaded Block  

 

s/H                          a/H 

   ≥ 1.5          1          0.5          0 

   1 

   2 

≥ 3 

       2            1.5        1.25        1 

      1.5          1.25      1.12        1 

      1             1           1             1 
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The French rules, given in Table 2, mentioned in [5], correct for the omission of H in 

the CIB Code by showing the dependence of the strength on H. The table shows the 

boundary value of a/H = 1.5, mentioned above. When a/H = (L - s)/2H ≥ 1.5, thus 

when L ≥ 3H + s, the maximal spreading is reached according to Fig. 1. An other 

boundary of the table is given for s/H ≥ 3. It then is assumed that in the middle of the 

specimen the same conditions appear as in the cube test. This applies for fully 

flexible, frictionless bearing plates. 

 
Fig. 3 -Cube test condition in the middle when there is no friction. 

 

The same condition is assumed to apply for a = 0 in fig. 2. Without friction, spreading 

is not possible at the edge and the strength is equal to the strength of the cube test. 

With friction along the plates, the confined pressure may e.g. be build up, even for s 

= L, according to Fig. 4. 

  

 
Fig. 4 – Slip lines of failure between two plates by friction along the plates.  

 

The influence of no friction along the bearing plate in the strong direction (and thus 

full friction in the width direction) can be assessed as lower bound by assuming that 

only symmetrical spreading is possible. Thus for Table 2 and 3: L = 2a + s.  

According to Eq.(1) then is: ck L/ s 1 (2a / H)/(s / H)    in Table 3. 

 

  Table 3 – Values of c c,s c,90k f / f  

 
 

s/H           a/H = (L – s)/2H 

   ≥ 1.5          1          0.5          0 

   1 

   2 

≥ 3 

       2            1.7        1.4          1 

      1.6          1.4        1.2          1 

      1             1           1             1 
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These values are close to the values of Table 2 and are comparable when:  
1.7 1.4 1.5 1.25

0.9
1.4 1.2 1.25 1.1

   
    
   

.   

Thus when, outer c = 1 in the first column, c = 0.9 in column 2 and 3 is used, 

indicating the safe lower bounds given by the French rules. 

 

In [6], test results are given of bearing in the range where H is not limiting for 

spreading because: L < 2H + s in the central loaded specimen. The determination of 

c,90f  is done on the same specimen, thus on the specimen of fig. 5 with an upper 

loading plate of length L, the same length as the bottom plate, giving by this form a 

higher strength than follows from the common compression test. The ultimate strain 

was chosen to be 2.5 %.  

 

 

Fig. 5 -- Spreading 1:1 in a central loaded block and end-loaded block of [6]. 

 

Table 4 – Values of ck  according to the test-specimens of fig.5.  

 

This compression strength is compared in [6] with the strength of the ASTM-bearing 

test, being the same test as given by the central loaded specimen of fig. 5, however 

                           measurements                                   Theory  

s/L    central Loaded    end loaded         central loaded        end loaded 

                  ck                   ck                            Eq.(1):  ck  = L / s          

1               1                      1                                1                                1         

0.875        1.063               1.063               1/ 0.875 1.07      1/ 0.875 1.07  

0.75          1.188               1.156              1/ 0.75 1.16         1/ 0.75 1.16  

0.625        1.375               1.281              1/ 0.625 1.27       1/ 0.625 1.27  

0.5            1.625               1.438              1/ 0.5 1.41           (0.5 0.5) / 0.5 1.41   

0.375        1.969               1.625              1/ 0.375 1.63       (0.375 0.5) / 0.375 1.53   

0.25          2.344               1.875              1/ 0.25 2              (0.5 0.25) / 0.25 1.73                               

0.125        2.781               2.156              L/ 0.125L 2.8      (0.5 0.125) / 0.125 2.2      



 6 

with a length of the upper plate of L/3. This explains why in the graph in [6] of the 

ASTM values are L / s 3  times higher than according to the compression 

strength of [6] done on the same specimen with s = L.  

In table 4 the test results (of series of 3 specimens) are compared with Eq.(1) and it is 

seen that also non-symmetrical spreading is possible of end loaded blocks because of 

the friction between plate and specimen  

According to the Eurocode a limiting value occurs at s/L ≤ 0.125 due to a local 

mechanism. The results here however don’t show such an empirical reduction of the 

strength with respect to the theoretical value. Also the theoretical limit values of the 

local mechanisms show much higher values of ck .  

In table 5, the empirical value of c of eq.(1) is given, based on the tests of [6]. 

 

  Table 5 – Values of s c,90 cf / f k  and of c = ck / L / s , according to Table 4.    

                         Measurements              Theory ck L / s   

s/L              central         end -             central         end  

                  loaded         loaded          loaded      loaded            c-values of Eq.(1) 

                      ck                ck                ck               ck           c = ck / L / s     = ck / L / s  

1                     1                  1                  1                 1                      1                      1 

0.785            1.063           1.063           1.07            1.07                   1                      1     

0.75              1.188           1.156           1.16            1.16                  1.03                  1 

0.625            1.375           1.281           1.27            1.27                  1.09                  1   

0.5                1.625           1.438           1.41            1.41                  1.15                  1    

0.375            1.969           1.625           1.63            1.53                  1.2                    1.06   

0.25              2.344           1.875           2.0              1.73                  1.17                  1.08 

0.125            2.781           2.156           2.8              2.2                    1                       1   limit  

mean of c:                                                                                       1.08                  1      

 

In Fig. 6, the results are given of tests on two sided locally loaded long blocks.  

From the figure it follows that: s + 3αH = L + 3.(1 - α)H. Thus:  
L s

0.5
6H


     

and thus the equivalent spreading factor (of the strength determining plate) is:  
L' s 3 H 3H L s 3H L

1 0.5 0.5
s s s 6H 2s

    
      

 
    

With H = 17.9; L = 35 and b = 18.1 cm according to the measurements of O. Graf is:  

c,90

L' 3H L
k c 1.1 0.5

s 2s


      

or: c,90k 1.1 0.5 (3 17.8 35) / 2s 1.1 0.5 44.2 / s          

leading to the values of sf  at 5 mm deformation (see figure) of the curves:  

1: 16 - 2: 30 - 3: 36 - 5: 43 - 6: 52 kgf/cm2, about the same as the measurements as can 

be seen in Table 6.  



 7 

 

 

 

 

 

 

 

 

 

For long blocks with respect to the 

bearing plates the maximal spreading 

will occur at both plates according to the 

figure 6..  

 

 
                       Possible spreading  

Fig. 6 - Local loading perpendicular to the grain [1] Graf  

  

  Table 6 - c,90 s c,90k f / f 1.1 0.5 44.2 / s     

Curve   s  

 cm 
c,90f  

MPa 

 c,90k  

 

Theory 

sf  

MPa 

Measurements    
  sf  

MPa 

ultimate 

strain  

6/178 or: 

3.4%  

1 

2 

3 

5 

6 

7 

 18 

 18 

 12 

  7.9 

  5.5 

  1.4 

 1.6 

 

 

 

 

 

          

  1.89 

  2.25 

  2.72 

  3.21 

  6.23 

 1.6 

 3.0 

 3.6 

 4.3 

 5.2 

 10 or local limit  

 1.6 

 3.0 

 3.3 

 4.3 

 5.4 

 > 7.5 

  3.4% 

  3.4% 

  3.4% 

  3.4% 

  3.4% 

   > 1% 

 

The highest maximum is not shown (of line 7 of fig.6). Predicted according to the last 

formula is: sf  = 10 MPa. However this may be cut off by a local mechanism. Because 

sf  ≥ 7.5 MPa is measured, the maximum value of c,90k  is at least 7.5/1.6 = 4.7, near the 
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theoretical value obtained from a local failure mechanism (giving an upper bound 

value) of about 5.5 to 6).  

The measurements of fig. 6 suggest a constant loading rate with a sudden instability 

of the test at the end. Therefore the curves 2, 5 and 6 end early at about 6 mm or 3.4% 

strain. For this reason all strengths were defined at this strain.  
The theoretical explanation of the test results of [7] is discussed next. This still 
appears to be necessary although the theory was published long ago and is applied 
in many reports of the Stevin Laboratory as e.g. in [10], where it is shown to be the 
only possible theory to explain the very high embedding strengths of particle board 
in compression.  
The theory also is published in CIB-papers e.g. in [8] and in a report for the CIB-
Stability Committee and more recently in [9], where it a was shown that the theory 
fully and precisely explains the data of Ballerini of [11] and the Karlsruher data of 
joints with one dowel.  
According to the theory Eq.(1) applies for the compression strength perpendicular to 
the grain, of a locally loaded bearing block: 
 

 
 
Fig. 7 – Test specimen  of [7] 
 

The factor of the increase of the compression strength by local loading ck  thus is: 

ck lc,90 c,90f / f L / s     

Because the 1% permanent strain (≈ 3% total strain) is chosen as ultimate strain, the 
stress distribution will be close to the elastic one and a spreading of about 1 to 1, or 
450 can be assumed (see Fig. 7). The maximal spreading at higher strains will be 1.5 to 
1. The length L thus will be for case 1 of Fig. 1, L = 200α + 150. For case 2 is: L = 200α 
+ 150 + 100, and for case 3: L = 2α∙200 + 150 mm, where α = 1 to 1.5. The length s = 
150. For the specimen height of 480 mm, all values of 200 in the expressions of L 
should be replaced by 480.  
Thus:  

case 1: ck L/ s (200 150) /150 1.53     to (1.5 200 150) /150 1.73   , etc.  
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For case 3 with H = 480, L can not be higher than the length of the specimen of 980 

mm and thus this length is the real spreading length giving ck 980 /150 2.56  .  

 
Table 1 – Empirical verification of the theoretical values of ck .  

 

ck L / s  

 

theory,  

1% strain 
  = 1 

measurements  
1% strain 

theory, prediction 
for high strain 

  = 1.5 

h = 200 mm 
case 1  
case 2  
case 3  

 

ck  = 1.53 

      = 1.73 
      = 1.91 

 

ck  = 1.58 

      = 1.94 
      = 1.94 

 

ck  = 1.73  

      = 1.92  
      = 2.24 

h = 480 mm 
case 1  
case 2  
case 3  

 

ck  = 2.05 

      = 2.21 
      = 2.56 

 

ck  = 1.82 

      = 2.12 
      = 2.46 

 

ck  = 2.41 

      = 2.54 
      = 2.56  

 

It can be seen that the measurements are close to the applied low strain prediction of 

the theory with the spreading slope of 450,  giving a very good explanation of the 

data at the different configurations. The higher strain predictions of the theory 

should be verified.   

 

It can be concluded that the theory gives an excellent explanation and precise fit of 

all the apparent contradictory test results of Suenson, the Eurocode, the French rules, 

Graf, Korin and Augustin et al. in all circumstances and loading cases.  

Therefore the proposal of the past remains to use the right design rules as for the 

Codes as given below.  

As proposal for the Eurocode the following rules are possible for bearing blocks:  

c,90,d c,90 c,90,dk f   , where:  

c,90k L / s    with: L ≤ a + s + 1l / 2 ;  L ≤ 3H + s and:  

c,90k   2.8       when s/L ≤ 0.125 for central loads;  

c,90k   2          when s/L ≤ 0.25   for end loads.  

For safe rules (when friction is only in the width direction), the conditions are:  

L ≤ 2a + s;   L ≤ s + 1l ;  L ≤ 2H + s,  

c,90k  = 2.8 when  s/L ≤ 0.125  

For the bearing strength of a middle section of a beam between two plates of lengths  

L and s is:  

c,90

3H L
k 1.1 0.5 5

2s


       

 

These rules for bearing block don’t apply for support stresses of beams. For the 

combined stresses in the beam, the failure criterion of [4] has to be applied. As long 
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this exact approach is not followed, the compression strength perpendicular to the 

grain at a middle support should safely be limited to c,90f / 2  in order to maintain the 

ultimate compression stress of the bending strength of the beam. 

 

Appendix A 

Derivation of the bearing strength perpendicular to the grain or locally loaded 
blocks and of the spreading equation by the method of characteristics 

The dependence of the strength upon spreading can be explained by the equilibrium 

method of the theory of plasticity. In the plastic region, a stress field can be 

constructed in the specimen that satisfies the equilibrium conditions:  

x 0
x y

 
 

 
  and  

y
0

x y


 

 
  (A.1) 

and the boundary conditions and nowhere surmounts the failure criterion.  

For this mostly determining failure criterion an inscribed Tresca criterion, Eq.(A.2), 

can safely be used  

 1 2 v/ 2 k f       (A.2)   

This failure criterion applies after a flow and hardening stage in the weak directions 

until a quasi isotropic flow behaviour occurs followed by further hardening ([2], [4]) 

and flow. In the figure below, a Mohr-circle of the failure condition is given with the 

general stress state x y, ,   . In Fig. A.1 is:  

1 2p ( ) / 2     and  1 2k ( ) / 2   .  (A.3) 

 

Fig. A.1 – Tresca failure condition  

 

In general is:  y xp kcos2 kcos2           and    ksin2    

Substitution of these equations of x y, ,    in the equilibrium equations gives 

p
2ksin 2 2kcos2 0

x x y

  
    

  
  (A.4) 



 11 

p
2kcos2 2ksin 2 0

y x y

  
    

  
  (A.5)  

Multiplication of Eq.(5) by tan(ψ – π/4) and then addition with Eq.(4) gives:  
a a

tan( / 4) 0
x y

 
   

 
  (A.6) 

where  a p 2k   . Thus along the characteristic with slope dy/dx = tan(ψ – π/4), is  

a = constant. The same can be done by multiplication of tan(ψ + π/4), leading to 
b b

tan( / 4) 0
x y

 
   

 
  (A.7) 

giving b p 2k    = constant along the characteristic with dy/dx = tan(ψ + π/4), To 

show that these lines are characteristics, Eq.(4) and (5) are combined with their 

corresponding equations of variation:  

 

1 0 2k sin 2 2k cos 2

0 1 2k cos 2 2k sin 2

dy
1 0 0

dx
dy

0 0 1
dx

   
 

 
 
 
 
 
 
 
 

p / x

p / y

/ x

/ y

  
  
 
  
 
  

 = 

0

0

dp / dx

d / dx

 
 
 
 
 

 

 

 

In this region in the failable state, lines can be given along which failure is initiated 

corresponding to the initiation of motion. Accordingly these are lines, called 

characteristics, across which derivatives may become discontinuous, or along which 

discontinuities in derivatives may propagate. On these lines, in the characteristic 

directions the derivatives thus have no determinate value and the directions can be 

found by equating all determinants to zero. A zero value of the nominator 

determinant gives, after subtraction of the third row from the first:  

 

dy
2ksin 2 2kcos 2

dx
det 1 2kcos 2 2ksin 2 0

dy
0 1

dx

 
    
 

   
 
 
 

  

or  
2

dy dy
cos2 2 sin 2 cos2 0

dx dx

   
       
   

   or:  
dy

tan 2 sec 2
dx

      or: 

dy
tan

dx 4

 
  

 
       and       

dy
tan

dx 4

 
  

 
     (A.8) 

This thus are the slopes of both orthogonal characteristics.  

A zero value of the denominator determinant gives: 
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dy dp
2k sin 2

dx dx
det 1 2k cos 2 0 0

d
0 1

dx

 
    
 

  
 
 
 

 or  
dy dpd d 1

cos2 sin 2 0
dx dx dx 2k dx

  
     

 
  

or with the found equation above of dy/dx :  

 
dpd 1

tan 2 sec 2 cos2 sin 2 0
dx 2k dx


              or:  

dpd 1
0

dx 2k dx


      or:  

p 2k a     constant  (A.9) 

p 2k b     constant  (A.10) 

along the first respectively the second characteristic (as found before).  

Calculation of the network of these slip-

lines is done numerically. From two  

 

 

 

 

 

 

 

 

Fig. A.2 - Construction of the slip lines. 

 

known points, known from the boundary condition or previous calculation, 1 1x ,y  

and 2 2x ,y , the next point x, y follows from: 

1 1y y (x x ) tan( / 4)          and   2 2y y (x x ) tan( / 4)       
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or after elimination of the unknowns: 

1 1 1 2 2 2

1 2

x tan( / 4) y x tan( / 4) y
x

tan( / 4) tan( / 4)

      


    
   and  2 2 2y y (x x )tan( / 4)      

The value of ψ follows from (b – a)/2 of point 1 and 2, and p follows from (a + b)/2.  

The result of the numerical construction of the slip-lines, given in [3] and Fig. A.2, 

can be precisely approximated by the function:  

θ ≈ 0.62∙ln(2H/s)  (A.11)  

This can be explained as follows. At the end of the outer curved slip-line over a 

length Rdφ is according to the chain equation Ndφ = σRdφ or N = σR, where N is the 

normal force along the slip-line. Further is also dN = τRdφ, or σ dR = τRdφ, or 

d(lnR)/dφ = τ/σ = μ and thus 0R R exp( )  , what is a logarithmic spiral. Now is:  

   L
L s t

s

R H
exp c( ) exp 1.61

R s / 2
       or:  t 0.62 ln 2H/ s   . 

It thus is probable that Eq.(A.11) is not an approximation but the true solution for the 

end point of the outer slip-lines.  

Triangle ABD of Fig. 2 is a region of constant state, where the maximum shear lines, 

or characteristics, are everywhere at 450  to the principal directions because of the 

uniform compression load on plane AB. Because the pole of the planes in the Mohr 

circle now is at point 2  in Fig. A.1, is / 2   . This direction of the plane with the 

minor principle stress is also the direction of the highest principle compression 

stress.  

 
Fig. A.3 – Determination of p and ψ in the p – 2kψ plane 

 

From point D, or point 11’ in Fig.A.2, to point 2., is:  

s 2'p 2k p 2k
2 2

  
    

 
. Thus: 2' sp p 2k    

From point 2’ to 22’ is:  

22' 2'p 2k p 2k
2 2

  
    

 
. Thus: 22' 2' sp p 2k p 4k       and: s op p 4k   .  

The same relation follows for point 33’, when the angle between line BD, and BC (at 



 14 

point B) is 2α:  s op p 4k(2 )   . Thus in general is: 

s op p 4k     (A.12)  

Inserting Eq.(A.11) and with s s s sp ( 2k)/ 2 k        and o op k   , this is: 

s o 2.48 k ln(2H/s)       (A.13) 

and because s os L      (see Fig. A.4) is: s(1 s / L) 2.48 k ln(2H/ s)     . Further 

elastic spreading will be at an angle of 450, thus for first flow, L ≈ 2H + s, or:  

H ≈ (L - s)/2 when H > s, thus: L/s > 3  

Substitution of the values for 0  and H in Eq.(A.13) gives:  

s

L L / s
2.48 k ln 1

s L / s 1

 
       

 
  (A.14) 

and because from the power law approximation follows that 
L L / s

ln 1
s L / s 1

 
  

 
 is 

proportional to L / s , (see Appendix B and C), Eq.(A.14) becomes:  

s 2.48 k C L/ s       (A.15) 

where C is a about 0.78.  

Thus:  

s 0.97 2k L/ s 2k L/ s        (A.16)  

The value of k follows from the compression test (cube test) with 1 c,90f   and 2 0   

or: c,90k f / 2 . Thus Eq.(6) becomes:  

s c,90 c,90f c f L / s f L / s       (A.17)  

The higher experimental value of c given in Eq.(1) shows the lower bound approach 

of the chosen method (the real slip/lines must give a higher value). Thus c gives the 

possibility to adapt the model to test results.  

 

 
 

Fig. A.4. - "Slip-lines" determining the direction of the main stresses  
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A similar solution is possible for the rotational symmetrical case, leading to the 

extension of Eq.(A.17) to the surfaces sA  ( 2s / 4 ) and LA  2( L / 4) . Thus generalized 

to every surface form: 

s c,90 L sf c f A / A     (A.18) 

Appendix B 

Derivation of the power law.  

Any function f(x) always can be written in a reduced variable x/x0   

f(x) = f1(x/x0)    

and can be given in the power of a function:  

f(x) = f1(x/x0) = [{f1(x/x0)}1/n]n   and expanded into the row:  

f(x)  = f(x0) + 
  



x x0

1!
.f'(x0 )

(x x0 )
2

2!
.f''(x0 ) .......  

giving:  

   
n n

1/ n 1/ n 10
1 1 1

0 0

x x 1 x. .f (x) f (1) f (1) f '(1) ..... f (1)
x n x

   
      
   

      

when: (f1(1))1/n = (f1(1))1/n-1f1’(1)/n                or: n = f1’(1)/f1(1)  

where: f1’(1) = [f1(x/x0)/(x/x0)]  for x = x0      and f1(1) = f(x0)  

Thus:  
  



f(x)  f(x0 ).
x

x0











n

     with   
  



n 
f1 '(1)

f1(1)


f'(x0 )

f(x0 )
             (B.1) 

It is seen from this derivation of the power law, Eq.(B.1), using only the first two 

expanded terms, that the equation only applies in a limited range of x around 0x .  

 

Appendix C 

Derivation of the power of the spreading equation.  

The in the Appendix A found part of Eq.(A.14):  (1.24∙(L/s)∙ln(L/s-1))/(L/s – 1), 

appears to follow the form of L / s . This follows from the power law approximation 

of Eq.(A.14) (according to Appendix B) giving a power 0.5. It thus is possible to split 

Eq.(A.14) into: L/s (1.24 ( L/s) ln(L/s-1))/(L/s - 1)= L/s C    , because the second 

part should be about constant.  

The special value of 0.5 of the power can be explained as follows. In the following 

derivation, the strengths of the upper and bottom planes will be related to the 

strength of an intermediate plane “m∙e”, having a strength according to the power 

law representation:  
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n

m c

Lt

me

 
    

 
. Thus from:  

1 n

m L L m c

me me
me Lt

Lt Lt


 

         
 

 for the bottom 

plane. Also is for the upper plane: 
n n 1

s m c c

me Lt me Lt L

ts me ts me s


   

           
   

. 

With: me = αts is: 
1 n 1 n

1 n
L c c

me s

Lt L

 
   

        
   

 

and is: 
n

1 n
s c

L

s
  

     
 

 

In general is Eq.(A.1): 

m

0
0

x.f(x) f(x )
x

 
  

 
, for 0

s
x x

L
 , equal to: 

1 n
1 n

L c

s

L


  

     
 

  

and for for 0

L
x x

s
 , equal to: 

n
1 n

s c

L

s
  

     
 

 

Because the exponent gives the slope of the curve and the curve should not be kinked 

at 0x , the exponents should be the same and: m = 1 - n = n, or n = 1/2.  

For α =1, the intermediate plane is the determining upper plane 
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